Hollow-core photonic-crystal fibres for laser dentistry.

نویسندگان

  • Stanislav O Konorov
  • Vladimir P Mitrokhin
  • Andrei B Fedotov
  • Dmitrii A Sidorov-Biryukov
  • Valentin I Beloglazov
  • Nina B Skibina
  • Ernst Wintner
  • Michael Scalora
  • Aleksei M Zheltikov
چکیده

Hollow-core photonic-crystal fibres (PCFs) for the delivery of high-fluence laser radiation capable of ablating tooth enamel are developed. Sequences of picosecond pulses of 1.06 microm Nd:YAG-laser radiation with a total energy of about 2 mJ are transmitted through a hollow-core photonic-crystal fibre with a core diameter of approximately 14 microm and are focused on a tooth surface in vitro to ablate dental tissue. The hollow-core PCF is shown to support the single-fundamental-mode regime for 1.06 microm laser radiation, serving as a spatial filter and allowing the laser beam quality to be substantially improved. The same fibre is used to transmit emission from plasmas produced by laser pulses on the tooth surface in the backward direction for detection and optical diagnostics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Delivery of high energy Er:YAG pulsed laser light at 2.94 µm through a silica hollow core photonic crystal fibre.

In this paper the delivery of high power Er:YAG laser pulses through a silica hollow core photonic crystal fibre is demonstrated. The Er:YAG wavelength of 2.94 µm is well beyond the normal transmittance of bulk silica but the unique hollow core guidance allows silica to guide in this regime. We have demonstrated for the first time the ability to deliver high energy pulses through an all-silica ...

متن کامل

Ultimate low loss of hollow-core photonic crystal fibres.

Hollow-core photonic crystal fibres have excited interest as potential ultra-low loss telecommunications fibres because light propagates mainly in air instead of solid glass. We propose that the ultimate limit to the attenuation of such fibres is determined by surface roughness due to frozenin capillary waves. This is confirmed by measurements of the surface roughness in a HC-PCF, the angular d...

متن کامل

Passively mode-locked fiber laser based on a hollow-core photonic crystal fiber filled with few-layered graphene oxide solution.

We demonstrate a nanosecond-pulse erbium-doped fiber laser that is passively mode locked by a hollow-core photonic crystal fiber filled with few-layered graphene oxide solution. Owing to the good solution processing capability of few-layered graphene oxide, which can be filled into the core of a hollow-core photonic crystal fiber through a selective hole filling process, a graphene saturable ab...

متن کامل

Hollow Core Photonic Crystal Fibre (HC-PCF) based Gas Sensor

We report the feasible design of the gas sensor based on Hollow-Core Photonic Crystal Fibers (HC-PCF) operating in the mid-IR. Hollow core photonic band gap fibres (HC-PBFs) are employed as gas cells due to their compactness, good integrability in optical systems and feasibility of long interaction lengths with gases. The challenge is in development and assembly of HC-PCF based gas cell where i...

متن کامل

Hollow core photonic crystal fiber based viscometer with Raman spectroscopy.

The velocity of a liquid flowing through the core of a hollow core photonic crystal fiber (driven by capillary forces) is used for the determination of a liquid's viscosity, using volumes of less than 10 nl. The simple optical technique used is based on the change in propagation characteristics of the fiber as it fills with the liquid of interest via capillary action, monitored by a laser sourc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physics in medicine and biology

دوره 49 7  شماره 

صفحات  -

تاریخ انتشار 2004